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THE INERTIA COEFFICIENTS OF AN AIRSHIP IN A FRICTIONLESS FLUID.

By H. BATEMAN.

SUMMARY.

The following investigation of tile apparent inertia of an airship hull was made at tile

request of tile National Advisory Committee for Aeronautics. The exact solution of the aero-

dynamical problem has been studied for hulls of various shapes and special attention has been

given to the case of an ellipsoidal hull. In order that the results for this last case may be

readily adapted to other cases, they are expressed in terms of the area and perimeter of the

largest cross section perpendicular to the direction of motion by means of a formula involving

a coefficient K whi(_l varies only slowly when the shape of the hull is changed, being 0.637

for a circular or elliptic disk, 0.5 for a sphere, and about 0.25 for a spheroid of fineness ratio 7.

For rough purposes it is sufficient to employ the coefficients, originally found for ellipsoids, for

hulls otherwise shaped. Wherl more exact vahies of the inertia are needed, estimates may be

based on a study of the way in which K varies with different characteristics and for such a

study the new coefficient possesses some advantages over one which is defined with reference to

the volume of fluid displaced.

The case of rotation of an airship hull has been investigated also and a coefficient has

been defined with the same advantages as the corresponding coefficient for rectilinear motion.

I. INTRODUCTION.

It follows from Green's analysis that when an ellipsoidal body moves in an infinite incom-

pressible inviscid fluid in such a way that the flow is everywhere of the irrotational, continuous

Eulerian type, the kinetic energy of the fluid produces an apparent increase in the mass and

moments of inertia of the body. The terms mass and moment of inertia are used here in a

generalized sense because it appears that the apparent mass is generally different for different

directions of motion and the apparent moment of inertia different for different axes of spins

For this reason it seems better to speak of inertia coefficients, these being the constant coeffi-

cients in the expression for the kinetic energy in terms of the component linear and angular

velocities relative to axes fixed in the body.

The idea of inertia coefficients may be extended to bodies of any shape and to eases in

which there is more than one body or in which the fluid is limited by a boundary. Generalized

coefficients may be defined, too, for cases in which there is circulation round some of the bodies

or boundaries and values can eventually be obtained which should correspond closely to the

values of tile inertia coefficients for the motion of a body in a viscous fluid.

The inertia coefficients of airship "hulls are useful for the interpretation of running tests

and in fact for a dynamical study of any type of motion of an airship, whether steady or unsteady.

The coefficients are needed, for instance, in the study of the stability of an airship by the method

of small oscillations t and for a computation of the resulting momenta in various types of steady

motion.

For the case of motion of translation with velocity U the kinetic energy, T, of the fluid

is usually expressed in the form
T= ½kin U _

where m is the mass of the fluid displaced by the body and k is a numerical coefficient whose

value is known in certain cases. A value of k for an airship hull is generally found by choos-

I For the literatureon this subject referencemay be made to a paper by R. Jones and D. H. Williams, British Aeronautical Research Com-

mittee, R. M. 751. June, 1921.
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ing an ellipsoid with nearly the same form as the hull and calculating the value of/c for the

ellipsoid. This method is to some extent unsatisfactory because the coefficient k varies con-
siderably with the shape, being infinite for a circular disk, 0.5 for a sphere, and 0.0_5 for a

prelate spheroid of fineness ratio 6. For this reason an alternative method is proposed in which
the kinetic energy of the fluid is expressed in terms of quantities relating to the master section
of the hull by means of a formula involving a numerical coefficient K which varies only slowly
with other characteristics such as the fineness ratio. The proposed expression is

82 U _
T=_Kp l

where S denotes the area and/the perimeter of the greatest cross section of the hull by a plane

perpendicular to the direction of motion; p is the density of the fluid and K the new coefficient
which is apparently greatest for a circular or elliptic disk.

In the case of a spheroid moving in the direction of its axis of symmetry the way in which

/c and K vary with the fineness ratio is shown in Figure 1. In Figure 2 the corresponding curves
have been drawn for a hull bounded by portions of two spheres cutting each other orthogonally.

The high value of K when the two spheres are equal is undoubtedly caused by the presence of
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the narrow waist, while the sudden drop in value indicates the effect of a lack of fore and aft
symmetry. The curves for K have an advantage over those for/c in indicating more clearly tile

effect of a change in shape. The effect of a flattening of the nose of the hull has been studied
by considering the case of a surface of revolution whose meridian curve is a limacon. The effect
is only slight:, as is seen from the table in Section IV. In the case of an airship hull spinning about
a central axis in a plane of symmetry the kinetic energy can also be expressed in terms of general
characteristics by using a formula involving a coefficient K, which varies only slowly with

the shape. The proposed formula is

T 64 (S_-Sr) _
= 45 K'pRZ_ l °_2_

where ¢o_is the angular velocity about the axis of spin, which we take as the axis of x, R. is the
maximum radius of gyration of a meridian section about the axis of x, S r and S_ are the areas of
central sections perpendicular to the axes of y and z and 1 is the perimeter of the meridian section

with the greatest perimeter, a meridian section being cut out by a plane through the axis of spin.
This formula has been constructed from the known formula for an ellipsoid with the axes

of coordinates as principal axes. To adapt it to a hull of a different shape a suitable set of axes
must be chosen. The principal axes of inertia at the center of gravity may, perhaps, be used

with advantage.
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The coefficients k, K and K' will now be computed in some cases in whi_:h ttle aerodynamical

problem is soluble. In particular they will be computed for the following cases:
(1) Disk moving axially.
(2) Prolate spheroid moving longitudinally.
(3) Prolate spheroid moving laterally.

(4) Oblate spheroid moving in the direction of its axis of symmetry.
(5) Oblate spheroid moving at right angles to its axis of symmetry.
(6) Solid formed by two orthogonal spheres.
(7) Solid formed by the revolution of a lima¢on about is axis of symmetry.

II, THE INERTIA COEFFICIENTS FOR AN ELLIPSOID.

When the viscosity of the fluid is neglected and the motion is treated as irrotational there
is no scale effect. This means that if we increase the velocity of the body in the ratio s.'1, keeping

its size constant, the velocity at any point of the fluid changes in the same proportion. A

similar remark applies to the case in which the body is spinning about an axis instead of moving
with a simple motion of translation and in the more general case in which a body has motions
of both translation and rotation the kinetic energy, T, can be expressed in the form:

2 T= Au _+ Bv 2+ Cw 2+ 2A'vw + 2B'wu + 2 C'uv + Pp_ + Qq_ -I Rr: + 2P'qr + 2Q'rp + 2R'pq

+ 2p ( Fu + Gv + Hw)" + 2q (F'u + G'v + H'w) + 2r ( F"u + G"v + H' 'w),

where (u, v, w) are the component velocities of a point fixed in the body and (p, q, r) are the

angular velocities of the body about axes through this point that are likewise fixed in the I)ody.
The coefficients A, B, C, A', B', C', P, Q, R, P', Q', R', F, G, H, F', F", G', G", H', H" are
constants which are called the inertia-coe_cie_ts of the body relative to these axes. This exl)res-
sion for the kinetic energy has been used also in cases in which the velocities are variable and the
determination of t}le inertia coefficients is evidently a matter of some importance.

The inertia coefficients are usually found by writing down the velocity potential or stream-

line function which specifies the flow and calculating the kinetic energy 1)y means of nn integral

of type

2 T=-p.f¢)_ dS

over the surface of the body, ¢ being the velocity potential, p the density of the fluid and d_
denotes an element of the normal to the surface dS drawn into the fluid. A different integral

may be used when the stream-line function is known, but in many cases integration is mmcces-
sary, for Munk 3 has remarked that in the case of a simple velocity of translation the tluitt motion
may be supposed to arise from a series of doublets and that the sum of the moments of all these
doublets has a component in the direction of motion which is proportional to the sum of the
kinetic energy of the fluid and the kinetic energy which the fluid displaced wouht have if it moved
like a rigid body with the same velocity as the body. The sum of the masses of the fluid aml
the fluid displaced has been called the complete mass.

The inertia-coefficients are well known for the case of an ellipsoid with semiaxcs a, b, c when
the axes of reference are the principal axes of the ellipsoid. We have in fact s

a0 (b 2- c')_ (3'o- B0) m
A=2_ao m, P=2(b2_c2) 4-(b3+c2)(_8o_./o) 5' etc.

4 A'=B'=C'=P'=Q'=R'=F=F'=F"=G G' G"=H=H'=H" o.m=3 fro abc, = = =

where

foa=+X)A, (b_+X) A, %=aoc (d+X)k' h=[(a'+X)(b2+X)(c2+X)]'"
o t o

2 see Lamb's hydrodynamics.
Technical Ntrte No. 104, National Advisory Committee for Aeronautics. July_ 1922.
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The complete cbefficients of inertia for motion of translation are

A* 2m B* = 2_0, C* 2ra

The coefficient k defined by the equation

_ _0

_-- O_0

has been tabulated by Professor Lamb in a number of cases? We have extended his tables

and have also tabulated the coefficient Kdefined in I. The different special cases of an ellipsoid
will now be discussed.

1. Elliptic disk.--In this ease ]_ is infinite but, the kinetic energy is finite. To find an
expression for K we write

abc dX _-_ 1.3. • • (2n - 1) abe dX
"°= /_=A_J _:_::--_ (c,- _2+x)_(c,+x_.+ ,

.9, n=o

f: (IX 2 _2 a _ v 2a 7ra_
(aS+X)i(c_+X)-_,/c_-a2 -tan-i _/c_-:a z =c -_-+2 _ .....

when a is small. Differentiating once with respect to a and n times with respect to c"_,we get

_ adX 2 7ra 3.5- • • (271+ I)(-1)"n! (-a,+X), (ca+X)_=e:.÷_ (-1)" n!- j_ (-1)" 2. + • • •

Hence

El+zl_--+c=-b2 13(c-_---b-2"_'+ ..... _ tab E1 ? l "3 c:-b_+ l "3Z'5 (e_-b_'_=÷_.-4z-....no- c 2..4 \ c_ ] -_- 2_ _ 2_1

f ] E °'?=2 _l-abe (-e2eos=O+b=sin20) } +higher powers of a =2 1 -4bc

approximately, where / is the perimeter of the ellipse with selniaxes b and e. ttence finally we
obtain

2T=16 o U'8 z, S = Trbc
3_r l

and _

K=2-=0.637
_r

The distribution of doublets may be found from the well-known expression for the potential
We have for an ellipsoid

abc x U (oo dX , x _ f + z_" -1

As a----)Owe have

_ 2b;c' _C _ dX x _ y=
Z _

..... _ ;o+_X0+_ =uJ_9(b' 4X)_ (>-+x)"
1

Putting X = x=s and making z_O we find that the value of _ on the disk is

-7_~=
4bc U /1 -_--z

¢+=-i- ¥ _" c"

British Advisory Committee [or Aeronautics. R. & M. No. 6_3, October (1918).
In the case of an infinitely long strip bounded by two parallel lines the value of K is 0.589.
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This must be equal to the 2_rtimes the moment per unit area of the doubletsin the neighbor-

hood ofthe point (0,y, z)of the disk. Hence the expressionforthe potentialisequivalentto

and this formula shows the way in which the potential arises from the doublets. The complete
energy is in this case

in accordance with Munk's theorem. To verify this result we put

Yo= bs cos w, zo= c8 sin
then

_f[ l-y°'-z°'l'b_ c" _] dY°dz°=bc_'s'/l_-s'ds_"d°a=_: bc.

With the above substitution the expression for the potential may be written in tile form

/ ;2bc d_
¢h=_l Ux 8_/1 _2ds R _'

R _= z_+ (y - bs cos _)_ + (z - cs sin w)_

and may be compared with the corresponding expression for the oblate spheroid. For the case

of the circular disk (b = c) the stream-line function may be obtained by replacing x in the above
formula by - (y2 +z2). When an elliptic disk spins about the axis of y the kinetic energy is
given by

f½ (1 +cos _0)d02T= 4 _oc2_: - [c_cos20+b_sin_O)i

where t2y is the angular velocity. In the case of a circular disk the kinetic energy is

sg pc._a:

The coefficient K _ thus has the value

Kl= l-=0.318..

2. Prelate spheroid.--In the case of a prelate spheroid moving in the direction of its axis of
symmetry, we have (Lamb, loc. cit.)

2(1 e'){1 I+e e Iao = e_ log 1 -- e -

where e is the eccentricity of the meridian section and so

where

The velocity potential is

b=c=a_/i "e 2

 _ob'wfT _ dx
-2-aoJ (a'+X) j(b'-, h)

X2 2 2__y +z
a2+X . _-_= 1
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By introducing the spheroidal coordinates

x=h uL Y=_ cos w, z=_ sin w, _=h (1-u_)_(_-=-l)',, h=ae

we may write this in the form

loc _ + 1
Ca=AP,(.)Q,(_)=AtL{_ Vf_l -i I

wheFo

A 1-e 2-2el°g1

Tile velocity potential may also be expressed as a definite integral

1 sds
4)'=6. Ah [ (x_hs)= Wf. + z_l:

J-I

which indicates the way in which it may be imagined to arise from a row of sources and sinks
on the line joining the foci. This result may be obtained by writing

1 ]o _'+1 /-lte f+l f(s)ds
,a{2r gi-_l-l]-2 J_ [(x-hs)'+f +zs]_

and determiningf(,) front the integral equation

1, _+1 f(s)ds

q' ('_) = 2'_ 3_ L /_(_ - s)

which is obtained by putting y =z = O. The integral equation is solved most conveniently by
using the well-known expansion

co

r1 +1,
0

and the integral fornmla

it is titus evident that

(s) P. (s) ds = 2 m = n

2n:_l

f(s) = P,(s) = s.

The strength of the source associatcd with an element hds is

1
Ah. sd_. 47rp

2

Multiplying this by (5:- U/ts and integrating with regard to s between-1 and i, we get

41r AMp U 47rp ah: U:
=3 1 1 lo 1 +e

l±e_-2e gl-e

The kinetic energy of the fluid plus the kinetic energy of the fluid displaced is, on the other
hand

4_'Pac'.l EU' ao _3- 2 1+2-<
liD(|

2_ao=2(1-e')r 1 1 logll+;]e' Lf+eS-2e

Thus Munk's theorem is again confirmed.
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In the case of a prelate spheroid moving broadside oll we have

1 1-e _ . l+e
f_o=_- 2e s lOgl_e

and the relation between K and/c is

K lk
=_ a

where l is the perimeter of the meridian section. The potential Cb may be expressed ill the
forms

ab2Vy [lo_ dX

dx
where

where

z_ +y:+z 2
a,_ b:_X =1

_b = A(I _ _:)½ (_.2_ 1)½ {1 lo_ _"+ l _"g _ - 1 - _'_--11 cos _1"

1 l+e e(1-2 ez) I
A{21ogl_ e- 1,-ei -j=-hV

1 A h c+1 (1-s_)ds

¢_=-2 Y J__[(_-h_P+y_¥z_] _

At Doctor Munk's suggestion one may interpret these results with the aid of the idea of

complete momentum, i. e., the momentum of the fluid plus the. momentum which the fluid
displaced by the body would have if it moved like a rigid body with the same velocity as the

body.
Let M_ and Mh denote the complete masses for motions parallel to the axes of z and y

respectively, then

4 Mh = _ lrpabc + ku)
M, = 3 ,pabc (1 +/c_) o (1

and we may write

M, U (+_ sds

3MbVy _+1 (1--s 2) ds

These equations show that when the complete )nomentum is given the velocity potential
and the sources from which it arises are the same for a seri°R of confocal spheroids2 This is

true for any angle of attack as is seen by superposition. This resalt is easily extended to the

ellipsoid, for we may write

_" = :v M_ Uxr,

where

. y_ . z_

s This is an extension to three dimension* of a theorem that has been proved, for the elliptic cylinder. Cf. Max. M. Munk, Not_ ou Aero-

dynarnic Forces. Tej:,hnical Note No. 10t, National Advisory Committee for Aer°nautics'
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It is easily seen that F is the same for a system of confocal ellipsoids. This result may be
used to find an appropriate system of singularities distributed over the region bounded by a
real confocal ellipse, the result is the same as that already found for the elliptic disk. 7

It is well known that an ellipsoid has three focal conics, one of which is imaginary, and the
question arises whether there is more than one simple distribution of singularities which will

produce the potential. This question will be discussed in Section III.
When a prelate spheroid is spinning with angular velocity fir about the axis of y, the

velocity potential (b is given by the formulae

_-+1 1_ F +1 s (1-s 5) ds

,
where A is a constant to be determined by means of the boundary condition

$4 / Sx _zX

It is easily seen that

A E 3 l + e 8 e "l- a_e_fi_e_ (2 - e3) log 1 - e- e- i - e2_]- Y

The energy may be expressed in terms of the mass of the fluid displaced by means of the
formula

2 T= k'm (-_-_)_'y

(the coefficient k' having been tabulated by Lamb) or it may be expressed in terms of other
characteristics with the aid of our coefficient K Z. The values of the various coefficients k and

K are given in Table I. The suffixes a and c are used to indicate the axis along which the
spheriod is moving. The coefficients k t and K _ refer to the case of rotation. It will be seen
that the coefficients K vary only slowly and the same remark applies to the product (I +k,)

(1 + k¢). One advantage in using the coefficients K, and K¢ is that it is not necessary to compute
the volume of the hull of the airship. Since K¢ varies very slowly indeed when the fineness
ratio a/c is in the neighborhood of 6, it follows that if we take K¢ = 0.6 for an airship hull we shall
not be far wrong.

TAnL_ I.

I I i !
a k, k, i (l+k,)

I (IWko) J_ :i K_ k' .K' iC
I

1.00 0.500 0.500 2,250 0,500 _ 0.5oo 0 ! 1
1.155 ........................................ : ' ............. , 0.906 i
1.50 ..... 6_;, ........ 6"_i .... 2.110 0.4s7 0._ o.244 .............
2.00 0.209 0.702 i 2 058 i 0 418 0 541 0 399 0 895
2.065 I.... [ ....... .............. ............. :............ : ............. 0._5

2._ i 0.1z_ 0._ 2._ j 0.3_ 0.571 i 0._ ............. I
3.571 i ............. I ............. : .............. !-"*- ...................... l ............. I 0.512 ;

3 90 0.082 0.860 2.012 I 0.317 ] 0.587 I 0.689 1.............
4.99 0.050 ] 0.895 2.006 I 0.294 ! 0.599 ............. i............. ;

6.Ol ! o o_ ] o.o18 2.oo4 I 0.270 ! 0.6o6 : 0.8o7 . ............
6.97 0.036 I............. .............. I 0.250 i-._ ........... ............. i .............
8.01 0.029 : ........ 0.232 ............. ............. !.............
0.02 I 0 024 ............ ; .............. 0.216 I ............. ' ............. ' .............

o.97 i o.o21 i........................... o.2oo i ....................................... i

i o I 1 I I o 1 i i

In this table use has been made of the coefficients computed by Lamb. It should be

noticed that K. + 2 Ko is very nearly constant for values of ac lying between 1 and 6. This fact

may be used to compute K¢.when /(4 is known using a formula such as

1
K_='743 -2 K,

The value thus found is too large for large values of a and too small for small values of a.
C C

7Cf. Lamb's Hydrodynamics, 3d ed., ch V, p. 145.
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3. Oblatespheroid.--Inthe case of an oblate spheroid moving with velocity U in the

directionof itsaxis of symmetry, which we take as axis of z,we have

where e isthe eccentricityof the meridian section. In thiscase

b=c, a=c_-e.
The velocity potential is

ac2Ux [,¢o dX

_" = 2 :ao. ], a2+ X)t (c*+ X)

where
x2 y2 + z 3

a_),0 + c_-+),_= 1.

Introducing the spheroidal coordinates

x=htt_, y=_ cos w, z=_ sin w, _=h (1-#2) t (_'2+ 1)i, h=ce.

we may write
_=Ag (1-f cot-_i ")

where

A{a_-_2-:-a2-cos-la}= -h3U.

We also have

R _= (y-ha cos w)_+ (z-ha sin w)2+x 2.

When an oblate spheroid moves with velocity W at right angles to its axis of symmetry
we have

_/1 -e2 [sin -_ e - e_/1 - e_]Go= 70 e3

and the relation between kc and K¢ is now

Ro lko

The velocity potential ¢o is given by the formulae

,_c 2__o )_ (a_+X)_(c_+X)_

=A(1--g')½ (_'+ l)_ {_ l-cot-'f} siu w

[,, [,_.

Jo JO

2_= (y-hs cos w)2 + (z-_ sin wp + _; h=ce= _/_

A {cos-s a a' + 2c' }c ac_ _/c_' = h_W.
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Some values of the coefficients ka, k¢, K_, Kc, are given in Table II.

TABLE II.

1.00
1.50
2,00
2.99
3.99
4.99
6. OI

o3

kL

O. 5OO
0. 621
0. 702
0.803
0.860
0. 895
0.918
1.000

K,

0.5OO
0. 523
0. 541
0.57i
0. 587
0. 599
0.606
0. 637

kg

0.500
0. 382
0.310
0.223
0.174
0.143
0.120.5
0.000

I(. (l+k.)fl+k°)!
: !

0.500 2.250
0.4824 2.240
0.477 2.229
O. 473 2. 205
0. 474 2,184
O. 477 2.166
O. 478 2.149
0.500 2.000

When an oblate spheroid spins with angular velocity wy about the axis of y the velocity
potential _' is given by the formulm

C= (c2- a2)2abc_y
2 (c_ - a2) + (c2+ a_)('Yo- _o)

11}_'= A_ (1 -g2)i (_2+ 1)_ {3_"cot-_i " - 3 + _-2+

We also have

{_c2+a 2 a a 7c2+a21 _5A _c__ a_cos-' c- c__,Jc_- a_l='_ '_'

_ 1"
_'=- s(1-s2)_ds _z_z R dw

IIl. THE METHOD BASED ON THE USE OF SOURCES AND SINKS.

It was shown by Stokes s that the velocity potential for the irrotational motion of an
incompressible nonviscous fluid in the space outside a sphere of radius, a, moving with velocity
U, is the same as that of a doublet of moment 2_- Ua3 situated at the center of the sphere. This
result has been generalized by Rankine, 9 D. W. Taylor, TM Fuhrmann, H Munk, _ and others, two

sources of opposite signs at a finite distance apart giving stream lines shaped like an airship.
Munk has shown in a recent report that the intensity of the point source near one end of

an airship hull may be taken to be r27rL, where r is the radius of the greatest section of the
ship and ½r the distance of the point source from the head of the ship. The total energy of
the fluid displaced is then

1
T= 6_rr3p U 2

and the apparent increment of mass of the airship is equivalent to about 2½ per cent of the

mass of fluid displaced.
In this investigation the airship is treated as symmetrical fore and aft,, the two sources

of opposite signs being equidistant from the two ends and the contributions of the two sources

to the kinetic energy being equal. The, final result is identical with that for an elongated
spheroid with a ratio of axes equal to 9.

I Cambr. Phil Trans., vol. 8 (1843). [Math. and Phys. Papers, Vol. I. p. 17.1

m Phil. Trans. London (1871), p. _67.

l_ Trans. British Inst. Naval Architects, vol. 35 (1894), p. 385.

n lahrb, der Motorluftschlff-Studiengesellschaft, 1911-12.

1, National Advisory Committee for Aeronautics, Reports 114 and 117 (1921).
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It is thought that a lack of fore and aft symmetry will still further reduce the values of the
coefficients ]c and K. To get an idea of the effect of a lack of symmetry we shall consider the

case of a solid boUnded by portions of two orthogonal spheres. In this case, as is well known,
the velocity potential may be derived from three coUinear sources. We may in fact write

cos0. 1 ,_ cos0' 1 cosO
las U _a U--- ps U= 2 _- _- r '2 2 R 2

_b=21 aa U sin:r 0+ _al ,a U sin2r'0'_21 pa U sin2R0

where a and a' are the radii of the two spheres (r, 8), (r' 0'), (R, O) are polar coordinates re-
ferred to the three sources as poles, the angles being measured from the line joining the three

sources. If Q is a common point of the two spheres R is measured from the foot of the per-
pendicular from Q on the line of centers, while r and r' are measured from the centers of the two

spheres respectively. The quantity p represents the distance of Q from the line of centers and is
given by the equation

1_1+1
i)2-a 2 a,2"

By means of Munk's theorem we infer that the complete energy is given by the fornmla

2 T= 2_rp [as +a 's-psI U2=p (1 +]c) VU 2
where

7r[- a2a'2 -]
V= _L 2 (a: +a'_)! +2a'+2a'S-3 (a2 +a'2)_ ]

is the volume of the fluid displaced.
The fineness ratio, i. e., the ratio of the length to the greatest breadth, is

f a+a,+_/_+a,_
= "- 2a "

Some values of k and K are given in Table III and curves have been drawn in Figure 2 to

show the effect of a lack of fore and aft symmetry. For a comparison we have given in Table
III the values of k and K for a spheroid of the same fineness ratio. The high value of K for
the two orthogonal spheres is undoubtedly due to the presence of a narrow waist. The sudden
drop in the value of K is probably due to the lack of fore and aft symmetry. The coefficient
K shows the effect of a change in shape much more clearly than the coefficient _-.

TABLE III.

" " -_ .... k A" -- / k (spheroid). K(spheroid)._11 I '

1.u0 0. 313 0. 5897 1.707 0. 243 0. 440

0,9 0.315 O. 5136 1.622 ............. I............. I
0.8 0.329 0.4708 1.54 ............. I............. I

0.66 0,363 0.46O3 ].434 ...........................
0.41 0.448 0.471 1.25 ............. I.
0.29 o.4s 0.4ss LI_ ............. !.:::: ::
o o.s 0.s _ 0.5 l o.5 [

It appears from an examination of the case of the oblate spheroid that the motion of air
round a moving surface of revolution can not always be derived from a number of sources at

real points on the axis. For the oblate spheroid the sources, or rather doublets, are in the

equitorial plane. It is possible, however, to replace these doublets by doublets at imaginary
points on the axis as the following analysis will show.

23--24--1 1
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if F(x, y, z) is a potential function, we have tlle equation 13

f0 _ if0_
1 F [x, y- _ cos _, x- _ sill _] d_ = F[x + i_ cos X, y, z] dX

2_r _"

which holds under fairly general conditions. On account of this equation we may write

1 _oh (2"/) 1 1._h _ 2_/) 1

where

Putting
R 2= x: + (y - a cos _) *+ (z - a sin _) _, R'2 = (x + ia cos X) 2+ f + z:.

f(_) =f_ (_) =_ (h_- _)_, g (_) =_ (h:- o_)t
making the substitution

_cos X=L dX_/<_-_2=-d_,

changing the order of integration and making use of the equations

hd_ _ ,_ (h___=)._fa_- __ = 4

l, a (h _- a2)i 3_r

which are easily verified by means of the substitution

a2=_2 cos 2 0+h 2sin 20,

we find that the potentials for the oblate spheroid in the three types of motion may be written
in the forms

h iA Ch_d£

J-h

¢p¢= - 2h_ (hi - _) d$ _z
h

f r", A (h=__*),d_ b" ( 1 __ iA b
_> = - Sh _ bz_iz \R") - + 2h _ _ (h=- _) d_ 5z

I_ ¢] --h

where
R" = [(x + i_) _+ f + z']t.

These formulm resemble those for the prolate spheroid.
A distribution of sources or doublets over the elliptic area bounded by a focal ellipse of an

ellipsoid may be replaced by a system of sources or doublets at imaginary points in one of the
other planes of symmetry by making use of the equation?'

ill H. Batem_,n_ Amer. Journ. of Mathematics, vol. 34 (1912), p. 335.
l_ H. Bateman, loc. ctt, p. 336.
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f2. f2n
F[x-_cosOcosa, y-_sinO, z]dO= F[z+izsinXsina, y,z+iacosX]dX

which likewise holds under fairly general conditions when F(x, y, z) is a potential function
and a an arbitrary constant.

The theorem relating to the transformation of doublets in a central plane into a series of
clout)lets at imaginary points on the axis of symmetry may be written in the general form

21. f (¢) de G b b 1 b b" 1
, d,0= a , #,, F (_)d_

J-h

where the functionsf(a) and F(() are connected by the integral equation

In order that Munk's theorem may be applicable to doublets at imaginary points as wcl
as to doublets at real points we mast have the equation

F (£) dl = f (a) de.
h

:Now

,_h ,_h oh t'- d oh

=J_h "f _

hence the formula is verified aml the complete mass may be calculated from doublets at imaginary
points by adding the moments and using Munk's formula.

IV. CASES IN WHICH THE MASS CAN BE FOUND WITH THE AID OF SPECIAL HARMONIC FUNCTIONS

It is known that the potential problem may be solved in certain cases by using series of

spheroidal, toroidal, bipolar, or cylindrical harmonics. Thus it may bc solved for the spherical
bowl, anchor ring, two spheres, '5 and for the body formed by the revolution of a lima¢on about
its axis of symmetry. The last case is of some interest, as it indicates the effect of a flattening
of the nose of an airship hull. Writing the equation of the limacon in the form

r=2a 2 s+eosO
S2- I

where r and 0 are polar coordinates, we find on making the substitutions

rcos0=x=_-n2, r sin 0= y= 2_r/

a sinh a a sin ×
=cosha-cosx V-cosha-cosx

that the potential for motion parallel to the axis of symmetry is

co

L ' ' (=)-Ir _.. Q =+, (s) _ _.Q.,
la=U (re+l) (m+'ZFp,=÷l(s) m P%(s)J¢=2

m=o

[Dm (cosh o') Pm+, (cos X) - Pro+, (cosh a) Pro(cos X)]

. .

l_ For references se_ Lamb's Hydrodynamics, 3d ed., pp. 126, 1t9; and A. B. Basset, l|ydrodynamics, Cambridge, 1S88, Vol. I.
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where Pm (s) and Qm (s) are the two types of Legendre functions (zonal harmonics) and P'm (,9),

Q'm (s) are tile derivatives of Pm (s) and Qm (s) respectively. The stream-line function _bits found
by Basset is in our notation.

co

_b= - cosh os - (2m + 3) p,_+, (s) P'm+_ (cosh a) 71".141 (cos x) sinh_ a sh_ _x• -- )_I11 o

At a great distance from tile origin we have the approximate expressions

la, U;sS,¢= la. U_-3, 2a'=-2 -2 R =c°sh a-cosx,

co

S= E (2m+3) (m+l) z (m+2) 2Q'm+' (s)P'_+I (s)
l]l--O

which give the sum of the moments of tile doublets from which the potential arises. The
coefficients ]camd K may now be calculated with the aid of Doctor Munk's theorem and an

incomplete table of spheroidal harmonics which is in the author's possession. We thus obtain
the values 1_

TABLE IV.

$

co l

3 1.05
2 1.10

1.2 1.153
1.1 1.154

1 l. 155

S=2

l= The values for the si)her<_id ha\e

mated by extrapoiatiou.

)¢ k

0.500

0. 527

0.54_,
0. 5(;9

0. 573

0. 578

K _ (spheroid) K (spheroid)

0.500 0.500 0.500

0.507 {!. 5_2 0.502
0. 513 D. 521 0. 5(}5

0.51g 0. 536 0. 507

0. 523 0. 536 0. 507
0. 527 0. 536 0. 507

i

The corresponding values for an oblate spheroid are given for com-
parison. The case in which s=2 is particularly interesting because
the limacon then has a point of undulation at the nose. When s<2
the limacon curves inward at the front, as may be seen from the dia-

grams in Figure 3, and the apparent mass is probably increased on
account of iluid being confined in the hollow. In calculating the line-

hess ratio in such a case the length has been measured from the rear
to the point where the double tangent meets the axis.

been obtained by interpolation from Table ]I. The values af k and K for the cardioid s= I have be_,n esti-
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